Global fits for top operators

Eleni Vryonidou

Snowmass Energy Frontier Workshop - Restart 30/8/21

Global EFT fits in top physics

Current Status

LHC Top WG recommendation

Interpreting top-quark LHC measurements in the standard-model effective field theory

J. A. Aguilar Saavedra, ¹ C. Degrande, ² G. Durieux, ³
F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang ⁵ (editors),
D. Barducci, ⁶ I. Brivio, ⁷ V. Cirigliano, ⁸ W. Dekens, ^{8,9} J. de Vries, ¹⁰ C. Englert, ¹¹
M. Fabbrichesi, ¹² C. Grojean, ^{3,13} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kamenik, ^{15,16}
M. Mangano, ² D. Marzocca, ¹² E. Mereghetti, ⁸ K. Mimasu, ⁴ L. Moore, ⁴ G. Perez, ¹⁷
T. Plehn, ¹⁸ F. Riva, ² M. Russell, ¹⁸ J. Santiago, ¹⁹ M. Schulze, ¹³ Y. Soreq, ²⁰
A. Tonero, ²¹ M. Trott, ⁷ S. Westhoff, ¹⁸ C. White, ²² A. Wulzer, ^{2,23,24} J. Zupan. ²⁵

Abstract

This note proposes common standards and prescriptions for the effective-field-theory interpretation of top-quark measurements at the LHC.

arXiv:1802.07237

Baseline flavour scenario singles out the 3rd generation

$$U(2)_q \times U(2)_u \times U(2)_d$$

four heavy quarks 11 + 2 CPV two light and two heavy quarks 14two heavy quarks and bosons 9 + 6 CPV two heavy quarks and two leptons (8 + 3 CPV) \times 3 lepton flavours

Current LHC fits ~30 coefficients

Category	Processes
	$t\bar{t}$ (inclusive)
	$t \overline{t} Z, t \overline{t} W$
Top quark production	single top (inclusive)
parton level	tZ,tW
	$t \overline{t} t \overline{t}, \ t \overline{t} b \overline{b}$
	Total

Bounds vary between operators ttZ ones and 4-heavy ones loosely constrained

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965 (SMEFiT analysis)

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606 (SFitter analysis)

Eleni Vryonidou

Top-quark 4-fermion operators

How to deal with them?

- Lots of them: Baseline CP-even scenario has 25
 - 1. 4quarks: we need lots of different observables

2. 2tops-2leptons not included in global fits:

ILC: Durieux et al arXiv:1907.10619

LHC: CMS-PAS-TOP-19-001

1. Non-interfering operators: leading constraints from dim6^2. Is there a way to avoid that?

Some are particularly tough:
 4-heavy operators (4tops & ttbb) - indirect (one-loop) constraints?

$$\mathcal{O}_{QQ}^{8} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{Q}\gamma_{\mu}T^{A}Q)$$

$$\mathcal{O}_{QQ}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{Q}\gamma_{\mu}Q)$$

$$\mathcal{O}_{Qt}^{8} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{t}\gamma_{\mu}T^{A}t)$$

$$\mathcal{O}_{Qt}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{t}\gamma_{\mu}t)$$

$$\mathcal{O}_{tt}^{1} = (\bar{t}\gamma^{\mu}t)(\bar{t}\gamma_{\mu}t)$$

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

Also at e+e- Banelli et al arXiv:2010.05915

Unavoidable Higgs-top connection

Operators connecting Higgs and top

Ethier et al arXiv:2105.00006

Future colliders below tt/ttH threshold only source of info on top is this kind of loops

e.g CEPC Durieux, Gu, EV, Zhang arXiv:1809.03520

Top-Higgs interplay

Global fits in the top+Higgs sector

~50 coefficients under U(2)q ×U(2)u × U(3)d

LHC: Need Higgs, top, diboson and EWPO

Higgs data improves certain top operator bounds

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Future colliders: 29 parameters (no 4F)

Adding top:

Jung, Lee, Perello, Tian, Vos arXiv:2006.14631

- Need HL-LHC to restore precision in Higgs
- Need above the threshold runs at ILC to precisely determine all

Can we envision a really global but constraining fit?

RGE effects Can they matter?

- Processes with different scales involved:
 - single top, top pair, 4 tops
- Distributions for top pairs reaching ~2TeV
- Running typically ignored in global fits
- How do the coefficients change within typical scale ranges and can this affect the fit?

Aoude, Maltoni, Mattelaer, EV in preparation

Global EFT fits in top physics

Future directions (1)

Improving LHC top fits:

- Additional/more sensitive top observables: going beyond parton level, spin correlations, production+decay
- 2quark-2lepton operators in global fits (by off-shell ttll measurements)
- CP-violation & different flavour assumptions
- RGE effects
- Systematic exploration of 1-loop effects (NLO QCD/EW)
- Systematic study of EFT uncertainties (higher order terms in 1/Λ)
- EFT in backgrounds, when do we have to worry?

Part of LHC EFT WG discussion (see also G. Durieux's talk)

Global EFT fits in top physics

Future directions (2)

Future colliders:

- Unlike the Higgs and EW sectors, limited work on HL-LHC, FCC-hh projections for top operators, need for global analyses
- Truly global fits for future colliders as typically only subsets of operators considered
- Combination of top+Higgs for future colliders, including 1-loop effects
- Systematic comparison prospects of different future colliders (ILC, FCC-ee, CEPC and different energies), using a common setup and common set of operators